En/De/Fr/It- (first 9 out of 172 sentences)
[pdf] |
Srpski - (prvih 9 od 172 rečenica)
[pdf]
|
n1 | A Model of Supply Chain with Possible Transshipmens Between Retails | n1 | Model lanca snabdevanja sa preraspodelom zaliha između maloprodajnih objekata |
n2 | Mohamed Abu Gaben, Slobodan Kr~evinac, Mirko Vujo[evi] | n2 | Mohamed Abu Gaben, Slobodan Krcevinac, Mirko Vujošević' |
n3 | 1Al Quds Open University, Gaza, Palestine, 2Faculty of Organizational Sciences, Beograd, m.i.rk.ov@fon.hg.ac.yu. | n3 | Al Quds Open University, Gaza, Palestine, mohamedguheen@yahoo.com 2Fakultet organizacionih nauka, Beograd, mirkov@fon.hg.ac.yu |
n4 | A supply chain with three stages - manufacturer, distributor and retail facilities - is considered. | n4 | U ovom radu opisuje se model lanca snahdevanja sa tri karike: dobavljač, distributivni centar i maloprodaja. |
n5 | Stochastic demand is met on retail level. | n5 | Tražnja je slučajnog karaktera i zadovoljava se u objektima maloprodaje. |
n6 | Retail facilities replenish their inventory periodically from the distribution centre and this is supplied from manufacturer on a periodical basis. | n6 | Maloprodavci se periodično (dnevno) snahdevaju iz distributivnog centra, a ovaj jednom u nekoliko perioda (jednom nedeljno), od dobavljača. |
n7 | Retail inventory is reviewed at the end of each period and new order is placed to the distribution centre. | n7 | Zalihe se kontrolišu na kraju perioda, i naručuju za sledeći period. |
n8 | The following two supplying replenishment rules are considered: a) there is no transshipment between retails, and h) transshipment between retails is allowed. | n8 | Razmatraju se dva sistema snabdevanja: a) kada ne postoji poprečno snabdevanja između objekata maloprodaje i b) kada postoji mogućnost preraspodele zaliha između maloprodavaca. |
n9 n10 | A mathematical model was developed for minimizing total inventory cost when demand is deterministic. The model was implemented using the AMPL modelling language. Optimal solutions for different scenarios, i.e. different sets of deterministic demand, are obtained using this model. These solutions are used as input data for new model which finds a compromise solution to minimizing the total regret. | n9 n10 | Razvijen je polazni matematički model za nalaženje optimalne politike snabdevanja kojom se minimiziraju ukupni troškovi za determinističku tražnju. Model je implementiran u modelujućem jeziku AMPL i korišćen je za određivanje ulaznih podataka za sledeći, složeniji model u kojem se traži najbolja politika snabdevanja za slučaj stohastičke tražnje. |