Bibliša: Aligned Collection Search Tool

[ Log In ] [ Register ]

 [About]



En/De/Fr/It- (first 9 out of 22 sentences) [pdf] Srpski - (prvih 9 od 22 rečenica) [pdf]
n1Maram Alharbi1,2, n1Maram Alharbi1,2,
n2Lancaster University, Jazan Universityn2Lancaster University, Jazan University
n3m.i.alharbi@lancaster.ac.ukn3m.i.alharbi@lancaster.ac.uk
n4Ruslan Mitkovn4Ruslan Mitkov
n5Lancaster University and University of Alicante n5Lancaster University and University of Alicante
n6r.mitkov@lancaster.ac.ukn6r.mitkov@lancaster.ac.uk
n7Comparing Rule-based and Deep Learning Approaches for Understanding Sentiments n7Poređenje pristupa zasnovanog na pravilima i dubokog učenja za razumevanje osećanja
n8In the rapidly evolving domain of sentiment analysis within the hospitality sector, accurately understanding customer sentiment from hotel reviews is increasingly crucial for market intelligence and improving service quality.n8U domenu analize zadovoljstva ugostiteljskim uslugama koja se brzo razvija, tačno razumevanje osećanja i mišljenja korisnika iz recenzija hotela je sve važnije za inteligentno upravljanje tržištem i poboljšanje kvaliteta usluge.
n9 This study focuses on categorising hotel reviews into positive and negative sentiments using a range of sentiment analysis models.n9 Ovo istraživanje se fokusira na kategorizaciju recenzija hotela na pozitivne i negativne komentare koristeći niz modela analize osećanja.